Course: Statistical Modelling in Biomedicine

Course type: elective
Lecturer: Nataša Kejžar
 

Study programme and level Study field Academic year Semester
Applied statistics, second level All modules 1st or 2nd 1st or 2nd

For the timeline see Curriculum.

Prerequisites:

  • Valid inscription to start the course, positively evaluated home work for taking the exam.

Content (Syllabus outline):
General concepts:

  • Formulation of models, estimation of parameters, interpretation
  • Interaction, relaxing the linearity assumption
  • Explained variation
  • Overfitting
  • Resampling, validation of models
  • Using R in statistical modelling

Logistic regression:

  • Fitting the model: maximum likelihood, point and interval estimation of the odds ratio, test statistic, residuals, goodness of fit, influential points
  • Interpretation of the model
  • Evaluating predictive value of the model
  • ROC curves

Objectives and competences:
The aim is for students to learn about strategies of statistical modelling, and to evaluate and validate a model, using logistic regression as an example.

Intended learning outcomes:
Students will be able to fit and interpret models, which will adequately fit the data.

 

Kontakt

Glavni kontakt:
e-pošta: info.stat (at) uni-lj.si

Kontakt za administrativna vprašanja (vpis, tehnična vprašanja):
Tanja Petek
Univerza v Ljubljani, Fakulteta za elektrotehniko, Tržaška cesta 25, 1000 Ljubljana.
št. sobe: AN012C-ŠTU
telefon: 01 4768 460
e-pošta: tanja.petek (at) fe.uni-lj.si